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Berry’s phase, chaos, and the deformations of Riemann surfaces
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Parametrized families of Landau Hamiltonians on compact Riemann surfaces corresponding to classically
chaotic families of geodesic motion are investigated. The parameters describe deformations of such surfaces
with genusg=1. It is shown that the adiabatic curvat{responsible for Berry’s phasef the lowest Landau
level for g>1 is the sum of two terms. The first term is proportional to the natural symplectic form on
deformation space, and the second is a fluctuating term reflecting the chaos of the geodesic mgtih. for
Forg=1 (integrable motion on the torusve have no fluctuating term. We propose our result to be interpreted
as a curvature analog of the well-known semiclassical trace formulas. Connections with the viscosity properties
of quantum Hall fluids on such surfaces are also pointed out. An interesting possibility in this respect is the
fractional quantization of certain components of the viscosity tensor of such fl&iti863-651X97)09410-5

PACS numbgs): 05.45:+b, 02.40.Ky, 03.65.Bz, 03.65.Sq

Parametrized families of quantum systems exhibit inter{with coordinates X,y)] can be represented as the deforma-
esting anholonomy properties with a wide range of physications of the metric. Using the coordinat#g,d, with the
applicationd 1]. It is a particularly interesting case when the propertyz=x+iy = (1/27/7,) (8, + 6,7), the metric is de-
family of quantum systems corresponds to a family of clasfineq py g=dx?+ dyzzg”(ﬂ?)d 9'dei. Our Landau
sically chaotic sys_temEZ]. An mterestmg question concern- |, oo s Ha= — Y (0~ iA)2+ (dy—iA)?]  with
ing such systems is the following: how does the chaos of th?——de/\d —dA The fl fh Y v/ - i
underlying classical system manifest itself in the an- y=dA. TheTiuX o the cons_tant magnetic i
holonomy properties of eigensubspaces of the correspondirﬁ)as to be quantlzed,_(JﬁaleF= N, i.e., N=B/2meZ.
Hamiltonian? An example illustrating this question can beUsing the metriog;;(7, 7) adapted to the deformed tori the
obtained by quantizing the chaotic geodesic motion on a andau HamiltonianHg(7, 7)= — gl (r, 7)D;D; can be
compact surface of constant negative curvature under the INslated to suitably chosen operators such ( —)
fluence of a constant magnetic fidld,4]. This means that §— y ) P i _H@ nT
we have to consider the spectral properties of Landau Hamil= B/2~Dg(7)Dg(7), i.e., the operatobg exhibits a holo-
tonians on a compact Riemann surface of gegusl. Pa- morphic dependence on t_he complex deformation parameter.
rametrized families of such Hamiltonians have been considl e lowest Landau level il-fold degenerate, and the states
ered in[5], where the parameter space was spanneddy 2%«.@=1,... N, can be obtained as the zero modegf.
Aharonov-Bohm fluxes. The adiabatic curvature responsibld he unnormalized states can be expressed in terms of the
for the anholonomy in this case can be related to the charg@€ta functions with characteristics and they also depend ho-
transport coefficients on this multiply connected surface. Théomorphically onr. Using the normalization properties of the
remarkable result ifi5] was the fact that the curvature splits theta functions we hava/,,s=(i.|¢z)=(72) "%5.5. The
into an integrali.e., a quantizedpart and a fluctuating part. adiabatic curvature for the spectral projedtof the ground
In this spirit, in this paper we consider a more general casestate is defined as(P)=Tr(PdP/\dP). By defining the
we deform the surface itself by employing the so-called Te-exterior derivativess=drd/dr, and d=d 7d/d 7 d=d+ 4,
ichmuler deformations[6] to obtain a family of Landau one can prove the relation
Hamiltonians parametrized byg3-3 complex parameters .
corresponding to a family of classically chaotic systems. In w(P)=iddlndetV,z (h)
order to give an answer to the question posed above we ) ] ) )
calculate the adiabatic curvature of the lowest Landau levelalid for an arbitrary wave function with holomorphic de-
The curvature in this case can be related to the componenf&ndence on some complex parameters. In our case we have
of the viscosity tensor for a quantum-Hall fluid with an en- the rankN projectorP, hence we obtain the result
ergy gap at zero temperaturé]. Since the theoretical tools
employed here are well known from string thedsge, e.g., w(P)=— E dr;/Ad7 - Ew %)

[8]) we merely outline the basic ideas. 87 1,2 Qar WP

To begin with and to gain some insight we first recall and
slightly reformulate results concerning the togis 1 case where wyp is the Weil-Petersson two-formil0]. In the
[7,9]. The Teichmiler spaceT; is just the upper half plane. length-twist coordinate$=1/\r, andt=—r,//7,, the al-

The family of tori X, is parametrized by a complex param- lowed deformations are executed by cutting the torus along
eter =7, t+i7, with positive imaginary part. It is repre- the geodesic with length twisting by an angle zt/| and
sented by parallelograms with opposite sides identified, witthen gluing the pieces together. In these coordinates
lattice vectors 17, and 7/\/7, normalized to preserve the wyp=dt/\dl, hence it is the natural symplectic structure.
(unit) area under deformations. Such deformations of toriNotice also that the gauge structure is Abelian sinGg is
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diagonal, vyielding the formulaw(P)=xYF,, where thatB must be rational.{=e=1). However, further argu-
Fop=FB,5. Here F is the two-form whose flux through a ments[4] show that a nonintegeB can only be introduced

surface bounded by the closed cu@agives Berry's phase. consistently provided we also introduce fluxes through the
Hence it follows that each individual level cycled adiabati- handles. Hence in the absence of fluxes we HaeeZ. The

cally along C picks up a Berry phasee'”c, where nextstep is to introduce complex coordinates, and the gauge

yc=— %(Area) with “Area” being the area enclosed Iy ~ choiceA=A,dz+Azd z= —2iB(d,0)dz to write Hg as
with respect to the symplectic form,p. Note that a calcu-

Iatio_n for the gxcited states Inabeled by 1,2 ... camalso be Hg=—2e 2[ 9,07 2B(d,0) 73]+ E

carried out with the resuly{™ = —(n+1/2)(Area)[9]. Re- 2

call also thatwyp is invariant with respect to the modular B B

group I'y=PSL(22), then it also defines a two-form on = DEDB+ 5= DB+1DE+1— oL (4

moduli spaceM =7, /T"{, which is a sphere with one punc-
ture and two orbifold points. Hence the true parameter space o t ,
for the deformations of tori is the moduli space. @, we ~ WhereDg=2e “’d;-andDg= —d,+2(B—1)(d,0), which
have also non-Abelian anholonomy defined by some projecare just the operators introduced[BJ. SinceHyg is positive
tive unitary representation df, arising from the transforma- definite we have forB>0 KerD{,;=0. Using now the
tion properties of the theta functiof8]. Moreover, we can Riemann-Roch theoreii6] we obtain the degeneracy of the
also allow deformations of our torus for wich the geodesiclowest Landau level as dim KBg=(2B—-1)(g—1)
length| is getting pinched down to zero. The torus in this Hence we havélg|,)=(B/2)|#,) a=1,... N—g+1 for
way has developed a node. With the help of such deformaN>2g—2 (B>1) the only case considered here, where
tions we cancompactifyM;. We can extends(P) to the ~ N=(1/2m)[5 F is the number of flux quanta. The next step

resulting compact spack(;, which is an orbifold. One can is to deform the operatoBg andD}; by using the(3) metric
now characterize the nondissipative part of the viscosity of aleformation. Here we meet a pleasant surprig: (D{)
quantum Hall fluid on the torus with a full Landau level and varies holomorphically(antiholomorphically with 7. The
an energy gap at zero temperature-b¢N/2)wyp living on  same property is valid fors,) ({(i,]). In order to calculate

M,. We can also calculate (y@fﬂlw(p) yielding the the adiabatic curvature we calculate the quantity

rational number— N/24, which is a topological invariant for 19dIndet DE(7)Dg(7) (recall our ConVentiOWEdeﬁ/ﬁfj)- .
the eigenstate bundle of the lowest Landau level. This topoWe define this determinant via zeta function regularization,
logical Chern number is completely analogous to the onénd the prime indicates deletion of zero modes. Using the
found for the conductance in the theory of the quantum Halformula[12] valid for parametrized families of operatas
effect.

Now we turn to theg=2 case. Locally we can choose dlndet K= —IimTr[(1—P) dK(K) te K], (5)
isothermal coordinates in which the metric takes the form t—0
g=e?dzd z=2g,5dzd z The deformations of our surfaces
will be described by suitable deformations of the metric. In
analogy with the torus case we will be interested in the

straightforward calculation shows that (K¥€r=0 for B>1)

N
Teichmiler deformations. The Teichnlier space can be de- _ — detDgDg ! A ta-tubDf
. ) . iddln =ilimt| duTr(oD'e
scribed asZy=Metrgy,s(2 ¢)/Diff o(2 4). We define elements dely lig) (o Jo
of Metreons(24) by metrics with scalar curvaturgy=—1, .
i.e.,e?”= A o. By the Gauss-Bonnet theorem we see that we X gDe~ (1~wtb'Dy (6)

are considering those area-preserving metric deformations

that cannot be compensatdsy diffeomorphisms connected Using the explicit forms for the deformations Bf and D'
to the identity(i.e., infinitesimal reparametrizations It is  and short time Heat-kernel techniqU&s8] (see alsd13] in
well known that the metric deformations near the megric this respegtwe obtain the formula

we are interested in are of the forrhl]

C — .
5 fe_4"[(9;fj(92fk+%fjkao]dzd?)dTJAdj

g(n=e*|dz+g??df,;7dz[% j=1,...,3-3, (3 ‘67

7
where thef;,, form a basis in the §—3 complex dimen- @
sional space oholomorphic quadratic differentials.e., the  for the right-hand side of Eq6), whereCg=6B2—6B+1.
ones transforming as the components of a quarftitizz  For the allowed deformations;f=0 andAo=e 27, hence
with the propertyd,f=0. The complex coordinates now  using the definition of the Weil-Petersson two-fofh®] and
coordinates forZy in the vicinity of g. Eg. (1) we can write down our main result:

Having described the deformations we are interested in,
now we turn to the description of Landau Hamiltonians on
24, and their deformations. Our Landau Hamiltonian
is Hg= —%e‘z"[(ax—iAX)2+(ay—iAy)2], with F=dA
=Be??dx/\dy, B=const. The flux onx, has to be quan- where we also expressed IntefDy in terms of Selberg’s
tized; combined with the Gauss-Bonnet theorem this impliegeta function/14], which is defined as

1 —
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* of such degenerate surfacdge., surfaces with nodgs
zB)=][] II (1—e ®*+kip), (9) amounts to attaching a boundary to Teictieluspace ob-
pk=0 taining?g. In this case we have to consider the behavior of
Note that in this definition oZ(B) our Riemann surfacE,  «(P) as one of its geodesic lengthsgoes to zero. Consider
is uniformized as{/I" where’H is the upper half plane arld first the extension ofvyp to T4 [16]. In a suitable complex
is a discrete subgroup of PSLE), Herep are inconjugate coordinate u (related to the length-twist parameters as
primitive hyperbolic elements ofl" representing simple | ~1/Inju/~* andt, can be written a$, times the phase of

closed geodesics with hyperbolic lend{p). u), the degenerating part abyp is du/\dW(In|u|*1)3|u|2.

. We can decompqse our surfakg into pants by CUt " Hence the extension is not smooth. Even thoughp has
ting it along 3 — 3 simple closed geodesi¢&0]. Denoting . " o ) ;
singularities, it is closedviewed as a current, i.efw

the lengths byl; and the twist parametets related to the _ - .
angle twists byd, =2t /l; (Frenchel-Nielssen coordinajes /\de=0, for some -3 form ¢ with compact support,

we can expressyp Using Scott Wolpert's formulf10] as  n=dimc7g) [17]. For the behavior of the second term in Eq.
pr=Ei3213dti/\dli, which defines an integrable Hamil- (8) we have t.o consider the asymptqtlc behavior of Selberg’s
tonian system on the “space of shape®. wyp is Kahler ~ Zeta  function 2 lo—0. Using the  property
on 7, [10] hence it is closed, and since dfy there are  7(—1/7)=(—i7)"7(7) with 7=il /2 of Dedzeklnd's eta
globally defined analytic coordinaté40] there is a globally  function it can be shown th&(B)~1,~8* %~ 7700, Hence
defined Kaler potentialUyp for which wywp=iddUyp. the part IiZ(B) of the Kahler potential is also singular. This
Moreoverwyp is invariant with respect to the mapping class shows thatw(P) is closed andocally in the sense of distri-
group of the surfac&'y=Diff * (24)/Diff o(24), hence italso  putions it can be expressed@éP) =iV for someV con-
defines a two-form on moduli spac&t,=7,/T"y. More-  tinyous.

over, by attaching a boundary fy (see belowwe can also Concerning the problem of Berry phases, due to the exis-
compactify Mg, obtaining Mg on which[ wyp]/ w2 defines  tence ofglobally defined analytic coordinates, we expect the

a rational cohomology clas§l0]. Hence by integrating matrix A/, to be globally diagonalizable ovef, [see Eq.
(1/2m) w(P) on two-cycles the first term of E¢8) will yield (1) and the torus case in this respedh this case the gauge
rational numbers. It is a topological invariatitmonopole  structure would be Abelian and we would have an expression
charge’) in the orbifold sense. Hence in the components ofio, F (the Robbins-Berry two-formi2]) as Eq.(8) divided by

the viscosity tensor the first term of E¢B) yields certain  (2B—1)(g—1). In this case we would have a two-form that
rational numbers depending on the choice Bfand the s closed, and exhibits singularities. Moreover, we would
choice of two-cycle representing the deformation in questhen define the gauge potential=iJdV with (2B
tipn. As an examp'le of this “ratiopql quantization” we con- _1)(g— 1)V = — (1/127) CgUp+ InZ(B) andJ is the com-
sider a surface with genus consisting of wo surfaces of plex structure on?g. Moreover, in[2] the classical limit of

gzl and.g—. 1 joined together by a single point: a node. The}. was considered and a convergent formula valid also for
f|rst' part is just a torus pqnctured only once. By mef.e'y al'chaotic systems was obtained. The authors also derived
lowing deformations of this “leaky torus” we can dejne @ semiclassical corrections to it associated with classical peri-
two-cycleC in Mg. One can prove thabwelc=wwelir,,  odic orbits. In this spirit it is tempting to interpret E}) as
where M, ; is just the moduli space of the leaky torus. Using the “curvature analogue” of the well-known trace formulas.
the result{15] [ v;. . wwp=7/6 one can prove that thirst On the left-hand side there is a quantity that is quantum in
part of (1/277)(”(':1,’; integrated ove is — & (B2—B+1) origin, it is Tr(PdP/\dP). On the right-hand side there are
(BeZ, B=2) 24 6 gquantities expressed in terms of the symplectic structure in

|En tr,1e s/eco'nd term of Eq8) InZ(B) is playing the role of length-twist parameterg@he term withw,,p) and the second

- X . (B) S playing the . variation of the length spectrum with respect to these param-

the Kahler potential. This term describes fluctuations in theeters[the term withZ(B)]. We might also conjecture that the
components of the vis_cosity tensor .Of a quantum_HaII fIUidsemiclassical formula i[]é] is exact for our example of sur-
on X [7]. Its geometrical meaning 15 also clear. it reﬂeCt.Sfaces with constant negative curvature. These results might
the chharllge 'ln the gefodesm length spectrltjm when agplylnghow the way to generalize the Hannay an@le} (the clas-
Frenchel-Nielssen deformations to our surface. According tqQ. , :
Eq. (2) for the torus §=1) we have no fluctuating term, in Sical analogs of Berry's phase for integrable sysfefos

. ; ) . chaotic systems. In order to prove these conjectures however,
accordance with the fact that the geodesic motiorzgnis further in¥/estigations are ne?aded )
integrable. '

From the physical point of view it is important to allow Financial support from Orsgas Tudomayos Kutatai
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(or more of its geodesics is pinching to zero. The inclusion fully acknowledged.
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