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Berry’s phase, chaos, and the deformations of Riemann surfaces

Péter Lévay
Department of Theoretical Physics, Institute of Physics, Technical University of Budapest, H-1521 Budapest, Hungary

~Received 25 March 1997!

Parametrized families of Landau Hamiltonians on compact Riemann surfaces corresponding to classically
chaotic families of geodesic motion are investigated. The parameters describe deformations of such surfaces
with genusg>1. It is shown that the adiabatic curvature~responsible for Berry’s phase! of the lowest Landau
level for g.1 is the sum of two terms. The first term is proportional to the natural symplectic form on
deformation space, and the second is a fluctuating term reflecting the chaos of the geodesic motion forg.1.
For g51 ~integrable motion on the torus! we have no fluctuating term. We propose our result to be interpreted
as a curvature analog of the well-known semiclassical trace formulas. Connections with the viscosity properties
of quantum Hall fluids on such surfaces are also pointed out. An interesting possibility in this respect is the
fractional quantization of certain components of the viscosity tensor of such fluids.@S1063-651X~97!09410-5#

PACS number~s!: 05.45.1b, 02.40.Ky, 03.65.Bz, 03.65.Sq
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Parametrized families of quantum systems exhibit int
esting anholonomy properties with a wide range of phys
applications@1#. It is a particularly interesting case when th
family of quantum systems corresponds to a family of cl
sically chaotic systems@2#. An interesting question concern
ing such systems is the following: how does the chaos of
underlying classical system manifest itself in the a
holonomy properties of eigensubspaces of the correspon
Hamiltonian? An example illustrating this question can
obtained by quantizing the chaotic geodesic motion o
compact surface of constant negative curvature under th
fluence of a constant magnetic field@3,4#. This means that
we have to consider the spectral properties of Landau Ha
tonians on a compact Riemann surface of genusg.1. Pa-
rametrized families of such Hamiltonians have been con
ered in @5#, where the parameter space was spanned byg
Aharonov-Bohm fluxes. The adiabatic curvature respons
for the anholonomy in this case can be related to the cha
transport coefficients on this multiply connected surface. T
remarkable result in@5# was the fact that the curvature spli
into an integral~i.e., a quantized! part and a fluctuating part
In this spirit, in this paper we consider a more general ca
we deform the surface itself by employing the so-called T
ichmüller deformations@6# to obtain a family of Landau
Hamiltonians parametrized by 3g23 complex parameter
corresponding to a family of classically chaotic systems.
order to give an answer to the question posed above
calculate the adiabatic curvature of the lowest Landau le
The curvature in this case can be related to the compon
of the viscosity tensor for a quantum-Hall fluid with an e
ergy gap at zero temperature@7#. Since the theoretical tool
employed here are well known from string theory~see, e.g.,
@8#! we merely outline the basic ideas.

To begin with and to gain some insight we first recall a
slightly reformulate results concerning the torusg51 case
@7,9#. The Teichmu¨ller spaceT1 is just the upper half plane
The family of tori S1 is parametrized by a complex param
eter t5t11 i t2 with positive imaginary part. It is repre
sented by parallelograms with opposite sides identified, w
lattice vectors 1/At2, andt/At2 normalized to preserve th
~unit! area under deformations. Such deformations of
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@with coordinates (x,y)# can be represented as the deform
tions of the metric. Using the coordinatesu1 ,u2 with the
propertyz5x1 iy5(1/2pAt2)(u11u2t), the metric is de-
fined by ĝ5dx21dy2[gi j (t, t̄ )du idu j . Our Landau

Hamiltonian is HB52 1
2 @(]x2 iAx)

21(]y2 iAy)
2# with

F5Bdx̀ dy5dA. The flux of the constant magnetic fieldB
has to be quantized, (1/2p)*S1

F5N, i.e., N5B/2pPZ.

Using the metricgi j (t, t̄ ) adapted to the deformed tori th

Landau HamiltoniansHB(t, t̄ )52 1
2 gi j (t, t̄ )DiD j can be

related to suitably chosen operators such asHB(t, t̄ )
2B/2;DB

†( t̄ )DB(t), i.e., the operatorDB exhibits a holo-
morphic dependence on the complex deformation parame
The lowest Landau level isN-fold degenerate, and the state
ca ,a51, . . . ,N, can be obtained as the zero modes ofDB .
The unnormalized states can be expressed in terms of
theta functions with characteristics and they also depend
lomorphically ont. Using the normalization properties of th
theta functions we haveNab[^caucb&5(t2)21/2dab . The
adiabatic curvature for the spectral projectorP of the ground
state is defined asv(P)5Tr(PdP`dP). By defining the
exterior derivatives][dt]/]t, and ]̄ [d t̄ ]/] t̄ d[]1 ]̄ ,
one can prove the relation

v~P!5 i ] ]̄ lndetNab ~1!

valid for an arbitrary wave function with holomorphic de
pendence on some complex parameters. In our case we
the rank-N projectorP, hence we obtain the result

v~P!52
B

8p

dt1`dt2

t2
2

[2
B

4p
vWP, ~2!

where vWP is the Weil-Petersson two-form@10#. In the
length-twist coordinatesl 51/At2 and t52t1 /At2, the al-
lowed deformations are executed by cutting the torus al
the geodesic with lengthl twisting by an angle 2pt/ l and
then gluing the pieces together. In these coordina
vWP5dt`dl, hence it is the natural symplectic structur
Notice also that the gauge structure is Abelian sinceNab is
6173 © 1997 The American Physical Society
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6174 56BRIEF REPORTS
diagonal, yielding the formulav(P)5(1
NFaa where

Fab5Fdab . HereF is the two-form whose flux through
surface bounded by the closed curveC gives Berry’s phase
Hence it follows that each individual level cycled adiaba
cally along C picks up a Berry phaseeigC, where

gC52 1
2 (Area) with ‘‘Area’’ being the area enclosed byC

with respect to the symplectic formvWP. Note that a calcu-
lation for the excited states labeled byn51,2 . . . canalso be
carried out with the resultgC

(n)52(n11/2)(Area) @9#. Re-
call also thatvWP is invariant with respect to the modula
group G1[PSL(2,Z), then it also defines a two-form o
moduli spaceM1[T1 /G1, which is a sphere with one punc
ture and two orbifold points. Hence the true parameter sp
for the deformations of tori is the moduli space. OnM1 we
have also non-Abelian anholonomy defined by some pro
tive unitary representation ofG1 arising from the transforma
tion properties of the theta functions@9#. Moreover, we can
also allow deformations of our torus for wich the geode
length l is getting pinched down to zero. The torus in th
way has developed a node. With the help of such defor
tions we cancompactifyM1. We can extendv(P) to the
resulting compact spaceM̄1, which is an orbifold. One can
now characterize the nondissipative part of the viscosity o
quantum Hall fluid on the torus with a full Landau level an
an energy gap at zero temperature by2(N/2)vWP living on
M̄1. We can also calculate (1/2p)*M̄1

v(P) yielding the

rational number2N/24, which is a topological invariant fo
the eigenstate bundle of the lowest Landau level. This to
logical Chern number is completely analogous to the o
found for the conductance in the theory of the quantum H
effect.

Now we turn to theg>2 case. Locally we can choos
isothermal coordinates in which the metric takes the fo
ĝ5e2sdzd z̄52gz z̄dzd z̄. The deformations of our surface
will be described by suitable deformations of the metric.
analogy with the torus case we will be interested in
Teichmüller deformations. The Teichmu¨ller space can be de
scribed asTg5Metrconst(Sg)/Diff 0(Sg). We define elements
of Metrconst(Sg) by metrics with scalar curvatureRĝ521,
i.e., e2s5ns. By the Gauss-Bonnet theorem we see that
are considering those area-preserving metric deformat
that cannot be compensatedby diffeomorphisms connecte
to the identity~i.e., infinitesimal reparametrizations! . It is
well known that the metric deformations near the metricĝ
we are interested in are of the form@11#

ĝ~t!5e2sudz1gz z̄t j f̄ j z̄ z̄d z̄ u2, j 51, . . . ,3g23, ~3!

where thef izz form a basis in the 3g23 complex dimen-
sional space ofholomorphic quadratic differentials, i.e., the
ones transforming as the components of a quantityf zzdz2

with the property] z̄ f 50. The complex coordinatest j now
coordinates forTg in the vicinity of ĝ.

Having described the deformations we are interested
now we turn to the description of Landau Hamiltonians
Sg , and their deformations. Our Landau Hamiltoni

is HB52 1
2 e22s@(]x2 iAx)

21(]y2 iAy)
2#, with F5dA

5Be2sdx`dy, B5const. The flux onSg has to be quan-
tized; combined with the Gauss-Bonnet theorem this imp
ce
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that B must be rational. (\5e51). However, further argu-
ments@4# show that a nonintegerB can only be introduced
consistently provided we also introduce fluxes through
handles. Hence in the absence of fluxes we haveBPZ. The
next step is to introduce complex coordinates, and the ga
choiceA5Azdz1A z̄d z̄522iB(]zs)dz, to write HB as

HB522e22s@]z] z̄22B~]zs!] z̄#1
B

2

5DB
†DB1

B

2
5DB11DB11

† 2
B

2
, ~4!

whereDB52e22s] z̄ andDB
†52]z12(B21)(]zs), which

are just the operators introduced in@8#. SinceHB is positive
definite we have forB.0 KerDB11

† 50. Using now the
Riemann-Roch theorem@6# we obtain the degeneracy of th
lowest Landau level as dim KerDB5(2B21)(g21) .
Hence we haveHBuca&5(B/2)uca& a51, . . . ,N2g11 for
N.2g22 (B.1) the only case considered here, whe
N5(1/2p)*Sg

F is the number of flux quanta. The next ste

is to deform the operatorsDB andDB
† by using the~3! metric

deformation. Here we meet a pleasant surprise:DB (DB
†)

varies holomorphically~antiholomorphically! with t j . The
same property is valid foruca& (^cau). In order to calculate
the adiabatic curvature we calculate the quan
i ] ]̄ lndet8DB

†( t̄ )DB(t) ~recall our convention][dt j]/]t j ).
We define this determinant via zeta function regularizati
and the prime indicates deletion of zero modes. Using
formula @12# valid for parametrized families of operatorsK,

]̄ lndet8K52 lim
t→0

Tr@~12P! ]̄ K~K !21e2tK#, ~5!

straightforward calculation shows that (KerD†50 for B.1)

i ] ]̄ ln
det8DB

†DB

det̂ caucb&
5 i lim

t→0
tE

0

1

du Tr~ ]̄ D†e2tuDD†

3]De2~12u!tD†D!. ~6!

Using the explicit forms for the deformations ofD and D†

and short time Heat-kernel techniques@6,8# ~see also@13# in
this respect! we obtain the formula

i
CB

6p
S E e24s[ ] z̄ f j]z f̄ k1 1

2 f j f̄ kns]dzd z̄Ddt j`d t̄ k

~7!

for the right-hand side of Eq.~6!, whereCB56B226B11.
For the allowed deformations] z̄ f 50 andDs5e22s, hence
using the definition of the Weil-Petersson two-form@10# and
Eq. ~1! we can write down our main result:

v~P!52
1

12p
CBvWP1 i ] ]̄ lnZ~B!, B>2, ~8!

where we also expressed lndet8DB
†DB in terms of Selberg’s

zeta function@14#, which is defined as
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Z~B!5)
p

)
k50

`

~12e2~B1k!l ~p!!. ~9!

Note that in this definition ofZ(B) our Riemann surfaceSg
is uniformized asH/G whereH is the upper half plane andG
is a discrete subgroup of PSL(2,R). Herep are inconjugate
primitive hyperbolic elements ofG representing simple
closed geodesics with hyperbolic lengthl (p).

We can decompose our surfaceSg into ‘‘pants’’ by cut-
ting it along 3g23 simple closed geodesics@10#. Denoting
the lengths byl j and the twist parameterst i related to the
angle twists byu i52pt i / l i ~Frenchel-Nielssen coordinates!,
we can expressvWP using Scott Wolpert’s formula@10# as
vWP5( i 51

3g23dti`dli , which defines an integrable Hami
tonian system on the ‘‘space of shapes’’Tg . vWP is Kähler
on Tg @10# hence it is closed, and since onTg there are
globally defined analytic coordinates@10# there is a globally
defined Kähler potential UWP for which vWP5 i ] ]̄ UWP.
MoreovervWP is invariant with respect to the mapping cla
group of the surfaceGg5Diff 1(Sg)/Diff 0(Sg), hence it also
defines a two-form on moduli spaceMg5Tg /Gg . More-
over, by attaching a boundary toTg ~see below! we can also
compactifyMg , obtainingM̄g on which@vWP#/p2 defines
a rational cohomology class@10#. Hence by integrating
(1/2p)v(P) on two-cycles the first term of Eq.~8! will yield
rational numbers. It is a topological invariant~‘‘monopole
charge’’! in the orbifold sense. Hence in the components
the viscosity tensor the first term of Eq.~8! yields certain
rational numbers depending on the choice ofB and the
choice of two-cycle representing the deformation in qu
tion. As an example of this ‘‘rational quantization’’ we con
sider a surface with genusg consisting of two surfaces o
g51 andg21 joined together by a single point: a node. T
first part is just a torus punctured only once. By merely
lowing deformations of this ‘‘leaky torus’’ we can define
two-cycle C in M̄g . One can prove thatvWPuC5vWPuM̄1,1

whereM̄1,1 is just the moduli space of the leaky torus. Usi
the result@15# *M̄1,1

vWP5p2/6 one can prove that thefirst

part of (1/2p)v(P) integrated overC is 2 1
24 (B22B1 1

6 )
(BPZ, B>2).

In the second term of Eq.~8! lnZ(B) is playing the role of
the Kähler potential. This term describes fluctuations in t
components of the viscosity tensor of a quantum Hall fl
on Sg @7#. Its geometrical meaning is also clear: it reflec
the change in the geodesic length spectrum when appl
Frenchel-Nielssen deformations to our surface. According
Eq. ~2! for the torus (g51) we have no fluctuating term, in
accordance with the fact that the geodesic motion onS1 is
integrable.

From the physical point of view it is important to allow
also those deformations of surfaces where the length of
~or more! of its geodesics is pinching to zero. The inclusi
f

-

-

g
to

ne

of such degenerate surfaces~i.e., surfaces with nodes!
amounts to attaching a boundary to Teichmu¨ller space ob-

taining T̄g . In this case we have to consider the behavior
v(P) as one of its geodesic lengthsl 0 goes to zero. Conside

first the extension ofvWP to T̄g @16#. In a suitable complex
coordinate u ~related to the length-twist parameters
l 0;1/lnuuu21 and t0 can be written asl 0 times the phase o

u), the degenerating part ofvWP is du`d ū/( lnuuu21)3uuu2.
Hence the extension is not smooth. Even thoughvWP has
singularities, it is closed~viewed as a current, i.e.,*v
`d%50, for some 2n23 form % with compact support,

n5dimCT̄g) @17#. For the behavior of the second term in E
~8! we have to consider the asymptotic behavior of Selber
zeta function as l 0→0. Using the property
h(21/t)5(2 i t)1/2h(t) with t[ i l 0 /2p of Dedekind’s eta

function it can be shown thatZ(B); l 0
2B11/2e2p2/6l 0. Hence

the part lnZ(B) of the Kähler potential is also singular. Thi
shows thatv(P) is closed andlocally in the sense of distri-

butions it can be expressed asv(P)5 i ] ]̄ V for someV con-
tinuous.

Concerning the problem of Berry phases, due to the e
tence ofglobally defined analytic coordinates, we expect t
matrix Nab to be globally diagonalizable overT̄g @see Eq.
~1! and the torus case in this respect#. In this case the gauge
structure would be Abelian and we would have an express
for F ~the Robbins-Berry two-form@2#! as Eq.~8! divided by
(2B21)(g21). In this case we would have a two-form th
is closed, and exhibits singularities. Moreover, we wou
then define the gauge potentialA[ iJdV with (2B
21)(g21)V52(1/12p)CBUWP1 lnZ(B) andJ is the com-
plex structure onT̄g . Moreover, in@2# the classical limit of
F was considered and a convergent formula valid also
chaotic systems was obtained. The authors also der
semiclassical corrections to it associated with classical p
odic orbits. In this spirit it is tempting to interpret Eq.~7! as
the ‘‘curvature analogue’’ of the well-known trace formula
On the left-hand side there is a quantity that is quantum
origin, it is Tr(PdP`dP). On the right-hand side there ar
quantities expressed in terms of the symplectic structure
length-twist parameters~the term withvWP) and the second
variation of the length spectrum with respect to these par
eters@the term withZ(B)#. We might also conjecture that th
semiclassical formula in@2# is exact for our example of sur
faces with constant negative curvature. These results m
show the way to generalize the Hannay angles@18# ~the clas-
sical analogs of Berry’s phase for integrable systems! for
chaotic systems. In order to prove these conjectures howe
further investigations are needed.
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